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An ortholattice (OL) is an algebra 〈A,∪,∩,′> in which the

following conditions hold:

a ∪ b = b ∪ a (1)

(a ∪ b) ∪ c = a ∪ (b ∪ c) (2)

a′′ = a (3)

a ∪ (a ∩ b) = a (4)

a ∩ b = (a′ ∪ b′)′ (5)

An orthomodular lattice (OML) is an OL in which

a ∪ b = ((a ∪ b) ∩ b′) ∪ b (6)

A Boolean algebra (BA) is an OML in which

a = (a ∩ b) ∪ (a ∩ b′) (7)
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A Neat Result

There is a single axiom of length 23 for OML, where

a|b def
= a′ ∪ b′ is the Sheffer stroke (McCune, Rose, Veroff

http://www.mcs.anl.gov/~mccune/papers/olsax/):

((((b|a)|(a|c))|d)|(a|((c|((a|a)|c))|c))) = a (8)

Open problem(?): is there one of length 21?
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Some Definitions

1
def
= a ∪ a′ (unit) (9)

0
def
= 1′ (zero) (10)

a ≤ b
def⇔ a = a ∩ b (less-than-or-equal) (11)

a ≡ b
def
= (a ∪ b) ∩ (a′ ∪ b′) (equivalence) (12)

aC b
def⇔ a = (a ∩ b) ∪ (a ∩ b′) (commutes) (13)
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A weakly orthomodular lattice (WOML) is an OL in which

(a′ ∩ (a ∪ b)) ∪ b′ ∪ (a ∩ b) = 1 (14)

A weakly Boolean algebra (WBA) is a WOML in which

a′ ∪ (a ∩ b) ∪ (a ∩ b′) = 1 (15)
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rr rr rr Lattice O6 is an example of a WOML and a WBA.

It is non-orthomodular and non-distributive,

yet it is a model for both quantum and classical

propositional calculus!
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Summary of WOML and WBA Results

• All OMLs (BAs) are WOMLs (WBAs).

• Not all WOMLs (WBAs) are OMLs (BAs).

• Any OML (BA) equation can be represented in WOML
(WBA) with the following mapping:

OML (BA) WOML (WBA)
a = b a ≡ b = 1

• WOMLs (WBAs) are more general models for quantum
(classical) propositional calculus, than the usual OML (BA)
models.
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The 6 Implications in OMLs

a →0 b
def
= a′ ∪ b (classical) (16)

a →1 b
def
= a′ ∪ (a ∩ b) (Sasaki) (17)

a →2 b
def
= b′ →1 a′ (Dishkant) (18)

a →3 b
def
= (a′ ∩ b) ∪ (a′ ∩ b′) ∪ (a →1 b) (Kalmbach) (19)

a →4 b
def
= b′ →3 a′ (non-tollens) (20)

a →5 b
def
= (a ∩ b) ∪ (a′ ∩ b) ∪ (a′ ∩ b′) (relevance) (21)

All 6 implications evaluate to a →0 b in a Boolean lattice. →i,

for i 6= 0, is called a quantum implication. →0 is called a

classical implication.
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Quantum implications are distinguished by the fact in an OML

they satisfy the Birkhoff-von Neumann condition:

a →i b = 1 ⇔ a ≤ b, i = 1, . . . ,5 (22)

Neat result (Pavičić/Megill, 1998):

a ∪ b = (a →i b) →i (((a →i b) →i (b →i a)) →i a) (23)

holds in any OML for i = 1, . . . ,5. This observation lets us to

construct, by adding a constant 0, an OML-equivalent

“unified” algebra with an (unspecified) quantum implication as

its only binary operation. Thus, we can study the properties

common to all quantum implications without a philosophical

debate of which is the “real” implication.
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Orthoimplication Algebra 〈A, .〉 (Abbott, 1976)

(ab)a = a (24)

(ab)b = (ba)a (25)

a((ba)c) = ac (26)

If “.” is interpreted as →2, then each equation holds in OML.

Conjecture (completeness): All such equations (i.e. polynomials

in →2 on each side of equality) that hold in OML can be

proved from this algebra.
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Quasi-Implication Algebra 〈A, .〉 (Hardegree, 1981)

(ab)a = a (27)

(ab)(ac) = (ba)(bc) (28)

((ab)(ba))a = ((ba)(ab))b (29)

If “.” is interpreted as →1, then each equation holds in OML.

Theorem (completeness) [Hardegree]: All such equations that

hold in OML, with →1 as the only operation, can be proved

from this algebra.
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Other Implication Algebras

Similar algebras for →3, →4, and →5 have not been proposed

nor any completeness results obtained.

The most promising system for future study is →5, because

a →1 b = a →5 (a →5 b) in any OML, holding promise that the

ideas in Hardegree’s →1 proof can be adapted for →5.

Systems for →3 and →4, as well as completeness of Abbott’s

→2 system, remain complete mysteries.
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Another Open OML Problem

Problem: does the following equation hold in all OMLs?

(a →5 b) ∩ (b →5 c) ∩ (c →5 d) ∩ (d →5 e) ∩ (e →5 a) =

(a ≡ b) ∩ (b ≡ c) ∩ (c ≡ d) ∩ (d ≡ e) (30)

Note: It holds for ≤ 4 variables. It does not hold for ≥ 6

variables.
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Orthomodular Lattices and Hilbert Space

Fact: The OML axioms hold in the lattice of closed subspaces
of infinite dimensional Hilbert space, C(H). This is a primary
motivation for studying them. But they aren’t the only
equations that hold!

Some history:

• 1936 - Birkhoff/von Neumann attempt to find a “logical
structure” for quantum mechanics, but find only the
modular law (holding only for finite-dimensional Hilbert
space).

• 1937 - Husumi discovers the orthomodular law and shows
that it holds in C(H).
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History (cont.)

• 1975 - Day discovers the orthoarguesian law and shows that

it holds in C(H).

• 1981 - Godowski discovers an infinite equational variety

derived from properties of states on C(H), that holds in

C(H).

• 1985 - Mayet extends Godowski’s discovery to prove the

existence of a more general equational variety that holds in

C(H). (However Mayet provides no actual examples of these

new equations that are stronger than Godowski’s.)
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History (cont.)

• 1995 - Solèr proves that an OML, with certain additional

conditions, determines a Hilbert space (very significant).

Thus OML theory (with these conditions) and Hilbert space

theory are duals.
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Some recent results:

• 2000 - Megill/Pavičić found an infinite equational variety

related to orthoarguesian equations, but stronger, that

holds in C(H).

• 2003 - Megill/Pavičić found examples (unpublished) of

Mayet’s equations that are stronger than Godowski’s, that

hold in C(H).
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Equations Related to States That Hold in C(H)

The simplest Godowski equation is

(a →1 b) ∩ (b →1 c) ∩ (c →1 a) ≤ a →1 c (31)

Using Mayet’s theory, Megill/Pavičić (unpublished) found

examples of equations stronger than (independent from)

Godowski’s. The simplest example is

((a →1 b) →1 (c →1 b)) ∩ (a →1 c) ∩ (b →1 a) ≤ c →1 a (32)
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More Definitions

a
c≡b

def
= ((a →1 c) ∩ (b →1 c)) ∪ ((a′ →1 c) ∩ (b′ →1 c)) (33)

a
c,d
≡b

def
= (a

d≡b) ∪ ((a
d≡c) ∩ (b

d≡c)) (34)

Orthoarguesian Equations That Hold in C(H)

(a →1 c) ∩ (a
c≡b) ≤ b →1 c (OA3) (35)

(a →1 d) ∩ (a
c,d
≡b) ≤ b →1 d (OA4) (36)

OA4 is a 4-variable equivalent to Day’s original 6-variable

orthoarguesian equation. OA3 is a strictly weaker 3-variable

equation, that is still stronger than the OM law. OMLs in

which OA3 or OA4 hold are called 3OAs, 4OAs respectively.
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Generalization of Orthoarguesian Law (Definitions)

a1
(3)
≡ a2

def
= a1

a3≡a2 (37)

a1
(4)
≡ a2

def
= a1

a4,a3≡ a2 (38)

a1
(5)
≡ a2

def
= (a1

(4)
≡ a2) ∪ ((a1

(4)
≡ a5) ∩ (a2

(4)
≡ a5)) (39)

a1
(n)
≡ a2

def
= (a1

(n−1)
≡ a2) ∪ ((a1

(n−1)
≡ an) ∩ (a2

(n−1)
≡ an)),

n ≥ 4 (40)
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Generalization of Orthoarguesian Law (Definitions, cont.)

To obtain
(n)
≡ we substitute in each

(n−1)
≡ subexpression only

the two explicit variables, leaving the other variables the same.

For example, (a2
(4)
≡ a5) in (39) means

(a2
(3)
≡ a5) ∪ ((a2

(3)
≡ a4) ∩ (a5

(3)
≡ a4)) which means

(((a2 →1 a3) ∩ (a5 →1 a3)) ∪ ((a′2 →1 a3) ∩ (a′5 →1

a3))) ∪ ((((a2 →1 a3) ∩ (a4 →1 a3)) ∪ ((a′2 →1 a3) ∩ (a′4 →1

a3))) ∩ (((a5 →1 a3) ∩ (a4 →1 a3)) ∪ ((a′5 →1 a3) ∩ (a′4 →1 a3))))
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Generalization of Orthoarguesian Law (cont.)

Theorem [Megill/Pavičić, 2000]: The nOA laws

(a1 →1 a3) ∩ (a1
(n)
≡ a2) ≤ a2 →1 a3 . (41)

hold in C(H). In addition, they form a series of successively

stronger laws than 3OA and 4OA (proved for n = 5 and n = 6;

open problem for n > 6).

The independence proof for n = 6 required 10 CPU years on a

192-CPU Linux cluster at Australian National University.
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“Orthoarguesian Identity” Laws

The relations

a
c≡b = 1 ⇔ a →1 c = b →1 c (OI3) (42)

a
c,d
≡b = 1 ⇔ a →1 d = b →1 d (OI4) (43)

hold in all 3OAs, 4OAs respectively.

Open problems:

OI3 conjecture: All OMLs in which OI3 holds are 3OAs.

OI4 conjecture: All OMLs in which OI4 holds are 4OAs.
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$100 Prize

I have “wasted” so much time and effort over the past 3 years

trying to prove or disprove the OI3 conjecture that, in an effort

to maintain my sanity, I hereby offer this prize to anyone who

proves or disproves it.
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The following equation, if it holds in all OMLs, will prove the

OI3 conjecture (note that −a means a′):

((((−(−a ∪ (a ∩ c)) ∪ ((−(−a ∪ (a ∩ c)) ∪ −(−b ∪ (b ∩ c))) ∩ (−a ∪
−b))) ∪ (((−a ∪ (a ∩ c)) ∩ (((−a ∪ (a ∩ c)) ∩ (−b ∪ (b ∩ c))) ∪ (a ∩
b))) ∩ c)) ∩ ((−(−b ∪ (b ∩ c)) ∪ ((−(−a ∪ (a ∩ c)) ∪ −(−b ∪ (b ∩
c))) ∩ (−a ∪ −b))) ∪ (((−b ∪ (b ∩ c)) ∩ (((−a ∪ (a ∩ c)) ∩ (−b ∪ (b ∩
c))) ∪ (a ∩ b))) ∩ c))) ∪ ((−a ∪ (a ∩ c)) ∩ (−b ∪ (b ∩ c)))) = 1

Using the Sasaki implication, we can abreviate this as follows:

(((((a →1 c)∩(((a →1 c)∩(b →1 c))∪(a∩b))) →1 c)∩(((b →1 c)∩
(((a →1 c)∩(b →1 c))∪(a∩b))) →1 c))∪((a →1 c)∩(b →1 c))) = 1
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Equations Related to the OI3 Conjecture

(a →1 c) ∩ (a
c≡b) C b →1 c (44)

(a →1 c) ∩ (a
c≡b) C (b →1 c) ∩ (a

c≡b) (45)

(a′ →1 c)′ ∩ (a
c≡b) ≤ b →1 c (46)

(a′ →1 c)′ ∩ (a
c≡b) C b →1 c (47)

(a′ →1 c)′ ∩ (a
c≡b) C (b →1 c) ∩ (a

c≡b) (48)

c ∩ (a →1 c) ∩ (a
c≡b) ≤ (b →1 c) (49)

c ∩ (a →1 c) ∩ (a
c≡b) C (b →1 c) (50)

c ∩ (a →1 c) ∩ (a
c≡b) C (b →1 c) ∩ (a

c≡b) (51)

((a →1 c) ∩ (a
c≡b)) →1 c = ((b →1 c) ∩ (a

c≡b)) →1 c (52)

((a →1 c) ∩ (a
c≡b)) →1 c C ((b →1 c) ∩ (a

c≡b)) →1 c (53)
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Equations Related to the OI3 Conjecture (cont.)

All of these equations are implied by the 3OA law. All of these

equations imply OI3. Unknown is whether most of them are

equivalent to the 3OA law. A proof of the OI3 conjecture

would establish all of them as equivalent to the 3OA law.

Known results are as follows (note that ⇒ means “can be

proved from the axiom system of OML + the left-hand side

equation added as an axiom”):

OA3 ⇔ 44 ⇒ 45 ⇒ OI3

OA3 ⇒ 46 ⇒ 47 ⇒ 48 ⇒ OI3

OA3 ⇒ 49 ⇔ 50 ⇔ 51 ⇒ OI3

OA3 ⇔ 52 ⇒ 53 ⇒ OI3
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